
TPC electronics Intro 2

Takao Sakaguchi BNL

What are we going to build in the end?

- Radial position: 30-85cm (Cage instrumented down to 20cm)
- Number of readout channels: ~200K
- ~40KV in the middle (400V/cm)
- Chevron type readout pads with approximately 1x10 mm² area each

c.f. ALICE

Radial position: 85cm-2.5m

Longitudinal volume: 2*2.5m

Drift voltage: 100KV (400V/cm)

Electronics: 560K channels

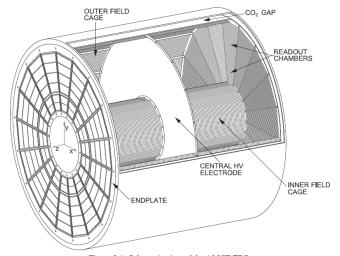


Figure 2.1: Schematic view of the ALICE TPC.

Fund

- TPC development is now funded by BNL LDRD
 - Two year funding with ~\$150K/year. Considering contingency, it is effectively \$100K/year
- Already significantly used for field cage development, etc.
- We have some fund left for electronics development
 - Also, we can consider applying another fund.

Readout situation

- We need electronics to readout. Based on the schedule outlined below, the electronics should be ready by the end of April next year
 - Roughly, one year from now
- We may want to establish a readout scheme that is also good for the final version if possible

2015		5		2016							2017													
Items	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9
Field Cage design																								
Field Cage procurement																								
Field Cage assembly																								
GEM Blob production																								
Chevron Pad ver1																								
Chevron Pad ver2																								
Chevron Pad ver3																								
FEM Development																								
Basic Performance test							1																	
Beam Test																								

FNAL Beam test

We are now for STAR iTPC electronics

- Follow the current STAR's iTPC electronics development plan
- Schedule of SAMPA chips
 - The first non-packaged SAMPA chip should come out early June
 - A prototype testing board for the non-packaged chips is designed and will be manufactured by ALICE-affiliated French group by July.
 - Tonko will get one board for local STAR preliminary tests.
 - The packaged chip is expected in mid/late July at which point STAR will have their own board for further testing and other integration
- No formal design of the electronics exists at this moment
 - Cost estimate for 80K channels in the following slide.

SAMPA chip in detail

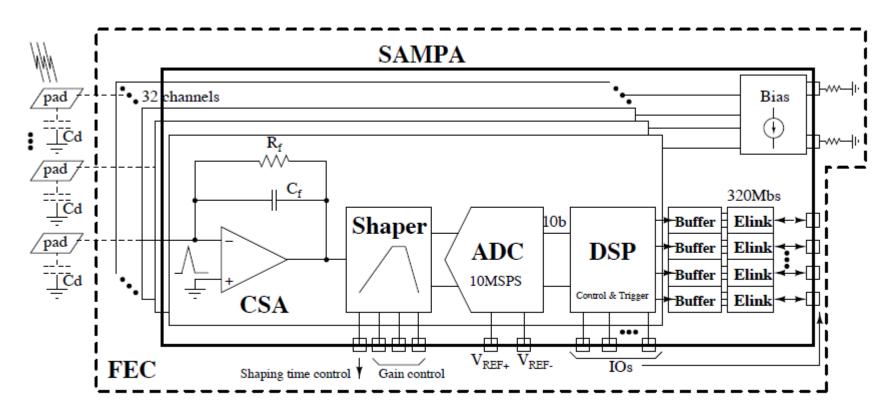
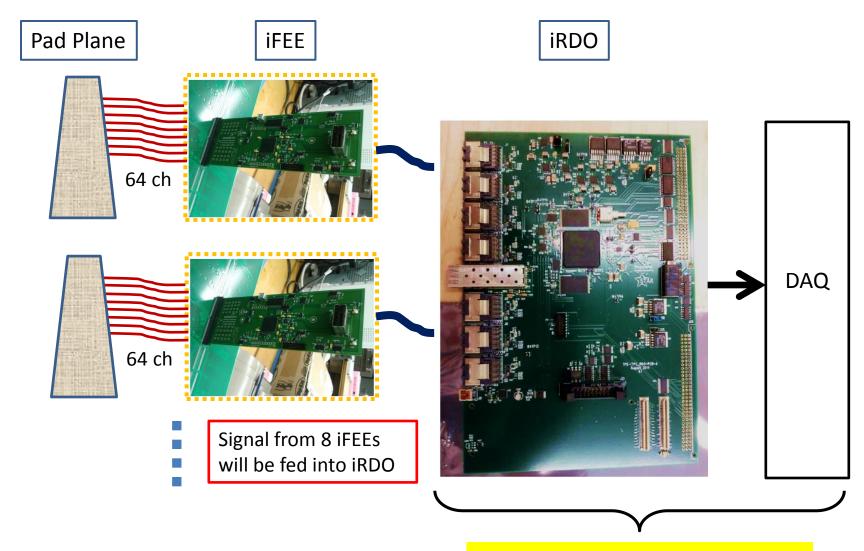



Figure 6.4: Schematic of the SAMPA ASIC for the GEM TPC readout, showing the main building blocks.

Readout scheme

Ref: Readout for ALICE TPC upgrade

- CRU interfaces the FEC and online computer farm
 - Our case, DCM-II will play the role of this.
 - FEC will send data in non-triggered mode, while DCM-II will send data in triggered mode
 - We may have to make a separate data collection stream for the TPC

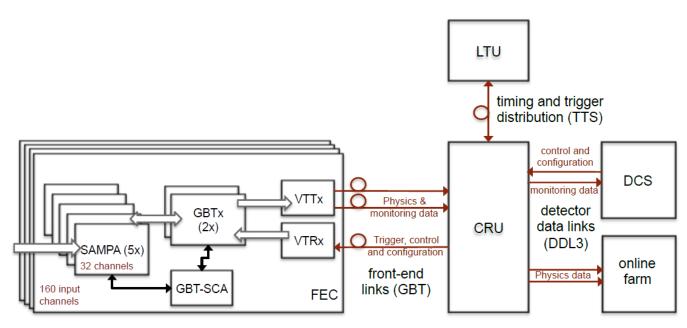


Figure 6.9: Schematic of the TPC readout system with the CRU as central part interfacing the front-end electronics to the trigger system, the DCS and the online farm.

Data rate consideration

- ALICE case (based on TDR):
 - Average event size: 20Mbyte/s (dN/dy=8000 for most central)
 - This number is no-pile up with shaping, sampling and zerosuppression
 - Number of pads: 560K
 - Interaction rate: 50KHz
 - Data rate: 50KHz*20Mbytes/s = 1Tbytes/s

sPHENIX case:

- Average event size: 7.5Mbytes/s (dN/dy=3000 for most central)
- Number of pads: 200K
- Interaction rate: 25KHz
- Data rate: 25KHz*7.5Mbytes/s * 0.4 (scale by number of pads) = ~75Gbytes/s

From Tonko's slides (for 80K channels)

We have to figure out the cost for labor!

Presented in Jan, 2016

Cost

	# items	# with spares	\$ per item	\$ all	With contingency (20%), overhead (56%)
SAMPA	2640	3500	\$44	\$154k	
iFEE	1320	1580	\$130 (wo SAMPA)	\$206k	
iRDO	96	116	\$1300	\$151k	
DAQ Receiver	24	26	\$3500	\$91k	
Cables, fibers, misc	-	-	-	\$50k	
Power Supplies	48	52	\$600	\$32k	
DAQ PC	24	26	\$3000	\$80k	
Totals				\$764k	\$1430k

From Tonko's slides

We could use the prototype iFEE for the current TPC development under BNL LDRD

Presented in Jan, 2016

Schedule

purchase all components install into 1 sector & test install all full system test iRDO prototype 2 final version produce 1 sector's worth produce 2 sector's worth install into 1 sector & test full system test				,	
test produce iFEE evaluate SAMPA prototype with SAMPA prototype with SAMPA prototype with SAMPA prototype with SAMPA iRDO prototype 2 final version produce 1 sector's worth produce 2 final version produce 1 sector's worth produce & Q&A all install all full system test install into 1 sector & test full system test install into 1 sector & test full system test		2016	2017	2018 early	2018 late
prototype with SAMPA produce 1 sector's worth vet PCB purchase all components Q&A install into 1 sector & test install all full system test iRDO prototype 2 final version produce 1 sector's worth produce 1 sector's worth install into 1 sector & test full system test	padplane	test		start sector installation	end sector installation
produce 1 sector's worth install into 1 sector & test full system test	iFEE			vet PCB purchase all components	mount SAMPA & components Q&A install all
	iRDO	prototype 2			
Power Supplies evaluate evaluate purchase & install all full system test Trigger Cables Fibers evaluate full test using 1 sector's worth			evaluate test	purchase & install all full test using 1 sector's worth	full system test
Receiver Cards prototype final version purchase & install all full test using 1 sector's worth	Receiver Cards	p. c.c.ypc	final version		full system test
DAQ PCs develop drivers final drivers & software purchase & install all full test using 1 sector's worth	DAQ PCs	develop drivers			full system test

Backup

sPHENIX TPC FEC cost (Nov. 2015)

	20	40.000.00	TD0 5 0400
Test Stand Modification	30	\$8,000.00	TPC-E-2180
Assemble and test prototype electronics:			TPC-E-2230
preproduction prototype	20	\$3,000.00	TPC-E-2230
Review and write design change specifications	25	\$43,000.00	TPC-E-2260

1.3.4.10.1.3

BOE prepared

_	Items	Duration (d)	costs	Notes	
Final external design review		20	\$33,000.00	TPC-E-3120	
	Procure all components needed for TPC FEC			TPC-E-1180, labor not included	
production		20	\$750,000.00	TPC-E-1180, labor not included	
	purchase a power supply module	5	\$84,000.00	Just to order, labor not included	
	Fabricate and assemble TPC FEC: production	55	\$220,000.00	TPC-E-2180	
	Test and qualify TPC FEC production	55	\$40,000.00	TPC-E-1230	

Not listed in the WBS

ltems	Duration (d)	costs	Notes
Shipping fee (to ORNL)	10	\$600.00	TPC-E-1190
Proess University of Houston Subcontract fee	1	\$6,900.00	TPC-E-1180
Final Vendor Evaluation and Selection	70	\$22,000.00	TPC-E-3110
FY16, Mgmt coord, contributed LOE and Travel	270	\$49,000.00	TPC-TR-FY16
FY17, Mgmt coord, contributed LOE and Travel	250	\$42,000.00	TPC-TR-FY17
FY18, Mgmt coord, contributed LOE and Travel	200	\$43,000.00	TPC-TR-FY18

750 \$1,869,500.00

\$561,600.00

Total

Total Time (days, listed in WBS)

Total Costs

Additional Costs for labor

*Not accounting for any parallel job splitting

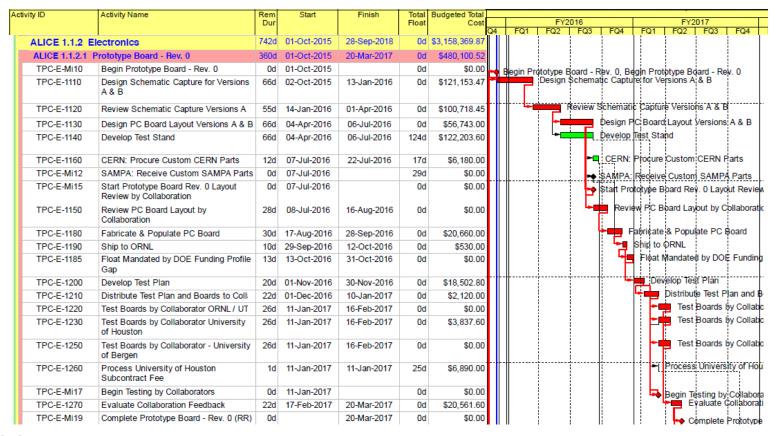
* used 8hrs/day, \$120/hr

* labor days: 750 - 165 (parts procurement and fabrication) = 585 days

* maybe double counting the labor cost for design/layout (correspoding to \$270,000.00)

Almost complete copy of ALICE WBS scaled by the # channels (560K -> 200K)

^{***} The number in notes are the pointer to the ALICE TPC electronics WBS


^{***} For actual material costs related to fabrication of boards, I scaled the costs by the factor of 2.5; We assume 200K channels, while ALICE TPC upgrade, it is 550K channels. 550/200=2.75, so 2.5 is a conservative estimate of the cost of fabrication

Cost and Schedule consideration

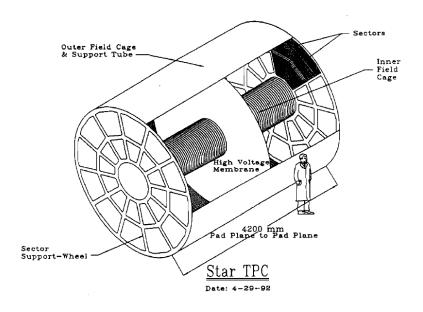
- Based on ALICE upgrade TPC electronics WBS
 - Details are in ORNL's WBS in the backup
- ALICE case: Two prototypes: Rev0 and Rev1
 - Takes three years to complete
 - Basically, board design and layout
- sPHENIX case: prototype-1 and pre-production prototype
 - Should take three years or less to complete
 - Pre-production prototype can be used for performance evaluation of TPC detector itself
- Cost partly depends on the number of channels
 - Material cost for the final production is reduced proportionally by the number of channels compare to ALICE TPC case
 - Detail evaluation of labor and material costs ended up with ~\$2.5M for the sPHENIX case
 - Details follow from the next slide

ALICE schedule from WBS last year

- The very first version of proto-type will be produced by the end of FY16
 - I thought they will produce ~10% of total. I should check
- One option is to join the test board effort?

How sPHENIX TPC is compared with others?

STAR


Radial position: 60cm-1.9m

Longitudinal volume: 2*2.1m

Drift voltage: 28kV (135V/cm)

Electronics: 140K channels

- dN/dy: 3000

ALICE

Radial position: 85cm-2.5m

Longitudinal volume: 2*2.5m

Drift voltage: 100KV (400V/cm)

Electronics: 560K channels

 – dN/dy: 8000 (40% occupancy at the inner radius)

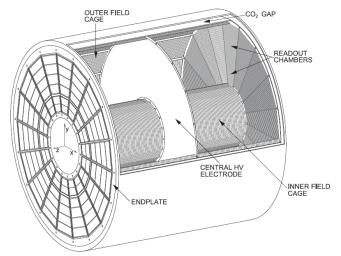


Figure 2.1: Schematic view of the ALICE TPC.

sPHENIX TPC is around half scale downsize of these TPCs!